Semantics Mediation

M.Wagner (Fraunhofer – Berlin)
C.Sofronis, O.Ferrante, A.Ferrari, L.Mangeruca (ALES S.r.l. – Rome)

The Internet of System Engineering
INCOSE-IL Seminar, Herzliya, Israel
15 September, 2011

Software Platform for Integration of Engineering and Things
ICT-2009.1.3 Project Number: 257909
www.sprint-iot.eu
• SPRINT Use Cases & Challenges
 – Heterogeneous modeling tools, semantics, MOCs
 – Distributed modeling
 – Over the internet design & integration
• State of the Art in the distributed Systems engineering
 – Transformations
 – Heterogeneous model exchange
 • Point-To-Point Integration, Star Integration
 • Common Meta Model (Speeds, Cesar)
 • Transformation Chains (ModelBus, iFest)
 – Comparison
• Knowledge management
 – Open World Assumption (OWA)
 – Closed World Assumption (CWA)
 – Example
• Semantic Mediation
 – Technological approach
• Conclusions
SPRINT Use Cases & Challenges

- Distributed, over the cloud design & integration
- Heterogeneous design
 - Different tools
 - Different semantics (Multi domain, aspect, MoC modeling)
- Continuous design (design teams all over the globe: 24/7 availability)
- Support data-model evolution
 - Flexibility on the data representation
 - Data migration of the evolving data representations
- Assert models & data consistency

- Represent information to the user in his format of choice
 - Avoid introduction of additional tooling (extra skills & costs)
 - Data has to be mediated and not just link tools
Heterogeneous modeling “intersection”

View A /Tool A

View B /Tool B

View C /Tool C

Domain transformations

Inter tool commonalities

universally common modeling info

Support ad-hoc semantics mediation

Facilitate the transition of the commonly understood parts

Facilitate the transition of the commonly understood parts
State of the Art (SPRINT D3.1)

• Transformations
 – Important Characteristics
 • Multidirectional
 • Incremental
 • Conservative (no duplication on subsequent transformations)
 • Traceability capability
 – Model Transformation Languages
 • ATL
 • QVT

• Heterogeneous models-information integration
 – Point-To-Point Integration, Star Integration
 – Common Meta Model (Speeds, Cesar)
 – Transformation Chains (ModelBus, iFest)
Point-to-point semantic mediations

• Each tool imports/exports models on its own meta-data
• Semantic mediation relations established between each pair of meta-data

→ To cover all transformations, we need \(\frac{N(N-1)}{2} \) relations
Common Meta Model (Speeds, Cesar)

- Each tool imports/exports models on the universal, commonly agreed meta-data
- Semantic mediation is guaranteed by the usage of the unique meta-data for the exchange of models
Transformation Chains (ModelBus, iFest)

- Each tool imports/exports models on its own meta-data
- Rules are employed for mediating semantics between different meta-models
- Inheritance of rules is possible

Tools

MD1

MD2

MD3

MD4

Domain 1-2

Domain 3-4

Abstractions

Model Repository

T1

T2

T3

T4

Tool Understanding

Transformation (data import/export)

Understanding

Dependency (inheritance)
• **Closed World Assumption (CWA)**
 – Everything (currently) not known to be true, is false
 • Assumption: you know everything of relevance and have modeled it
 – Advantages:
 • Easier to compute
 • Quicker to model (less information needed)
 – Disadvantages:
 • Limited expressiveness (“no modeling of the unknown”)

• **Open World Assumption (OWA)**
 – Adding new knowledge or information never falsifies previous assumptions.
 – Assumption: you don’t know everything of relevance and have to explore and incrementally model
 – Advantages:
 • Easy to extend
 • It is possible to ‘Represent’ unknown knowledge
 – Disadvantages:
 • Hard to retrieve/compute final conclusions/data
 • Adding information may lead to conflicts
 • More information needs to be modeled
CWA vs. OWA Example

- CWA
 - Knowledge
 - Michael is Swimmer
 - Christian is Swimmer
 - Query
 - is Sandra Swimmer?
 - Answer
 - No!

- OWA
 - Knowledge
 - Michael is Swimmer
 - Christian is Swimmer
 - Query
 - is Sandra Swimmer?
 - Answer:
 - Unknown!

More Computation
CWA vs. OWA Example

- **CWA**
 - Knowledge
 - Michael is Swimmer
 - Christian is Swimmer
 - Sandra is Swimmer
 - Query
 - is Sandra Swimmer?
 - Answer
 - No -> Yes!

- **OWA**
 - Knowledge
 - Michael is Swimmer
 - Christian is Swimmer
 - Sandra is Swimmer
 - Query
 - is Sandra Swimmer?
 - Answer:
 - Unknown -> Yes!
CWA vs. OWA Example

CWA

Knowledge
- Michael is Swimmer
- Christian is Swimmer

Query
- is Sandra Swimmer?

Answer
- No!

OWA

Knowledge
- Michael is Swimmer
- Christian is Swimmer
- Sandra is Non-swimmer
- Non-swimmer and Swimmer are disjoint

Query
- is Sandra Swimmer?

Answer:
- Unknown -> No!
Main concepts
- Tools & Tools Vocabularies
 - Authoring/editing information & representing it
- Domain Vocabularies (tools vocabularies are specific cases of these)
- Rules relating vocabularies (all permutations of vocabulary types)
 - OWL language (first-order logic formulae) to describe these rules \(\text{ongoing research - stay tuned for concrete examples}\)
- External “classical” point-to-point transformation

Semantic Mediation application
- \textit{On demand} application of a rule or a classical transformation
- Semantic Mediation Delegator to pick which semantic mediation to apply
- Traceability of Mediations
 - Establishing a relation creates has a pointer to the applied rule

Knowledge base
- Populated by tools (commit/publish models)
- Populated by Semantic Mediation application
Which SM to choose?

- Rule-based description is the OWL: mainly set inclusion
 - Simpler rules
 - Active research topic
 - Exploit the reasoning RDF(S)/OWL capabilities

- Model-transformation: richer expressiveness of the mediation
Conclusions

• Semantic Mediation in SPRINT
 – Enable distributed, over the internet authoring, editing & exchanging of models
 • “over the internet” is native in our RDF-based solution
 – Allow the flexibility of evolution of data and data representations
 – Mediating data in a flexible, reusable fashion
 – Currently vivid research topic
 – Support the wide-spread and adopted meta-meta-modeling facility EMF Eclipse Framework (dissemination, exploitation & development efficiency)

• Implementation Plan (approx. & to be validated by the SPRINT consortium)
 – EMF↔RDF Mapping Implementation (M14)
 – Definition of the Semantic Services Integration Layer (M17)
 – Semantic Mediation First Prototype Implementation (M19)
 – Semantic Mediation Implementation (M22)
 – Implementation of SSI Layer (M22)
Thank you!

Questions?
Andreas Keis
Engineering & Architecture
Manager Software Engineering
EADS Innovation Works
Quadrant Campus, Newport NP10 8FZ
United Kingdom
Tel: +44 (0) 1633 71 4760
Fax: +44 (0) 1633 71 3300
Mobile: +44 (0) 7970381972

Email: andreas.keis@eads.com
Linkedin: http://www.linkedin.com/in/andreaskeis